
VueJS as a
Frontend for Rails

CO D E S H I P. CO M - B LO G . CO D E S H I P. CO M - R E S O U RC E S . CO D E S H I P. CO M

DANIEL P. CLARK
FREELANCE DEVELOPER

About the Author.

Daniel P. Clark is a freelance developer, as well as a
Ruby and Rust enthusiast. He writes about Ruby on his
personal site.

Codeship is a fully customizable hosted Continuous
Integration and Delivery platform that helps you
build, test, and deploy web applications fast and with
confidence.

Learn more about Codeship here.

Share this

Codeship Guide

- 2 -

https://6ftdan.com/
https://codeship.com/?utm_source=CodeshipeBook&utm_medium=ebook&utm_campaign=vue-js-rails
https://www.facebook.com/sharer/sharer.php/?u=https://resources.codeship.com/ebooks/vue-js-rails
https://twitter.com/intent/tweet?text=I%20just%20downloaded%20@Codeship%27s%20free%20eBook%3A%20%22VueJS%20as%20a%20Frontend%20for%20Rails%22%3A%20https://resources.codeship.com/ebooks/vue-js-rails
https://plus.google.com/share?url=https://resources.codeship.com/ebooks/vue-js-rails

In this eBook we will talk about how VueJS provides an
elegant way to reduce JavaScript complexity in both scripting
and styling.

A
B

O
U

T
 T

H
IS

 E
B

O
O

K

VueJS as a Frontend
for Rails

VueJS is one of the fastest rising stars in the JavaScript
frontend ecosystem. It largely embodies simplicity and
composability of frontend design solutions without
going overboard.

It provides a more elegant way to reduce complexity
in both scripting and your styling by grouping them
into components. This protects your site's styles from
conflicts and also provides logical organization for
individual parts of your frontend code.

Share this

Codeship Guide

- 3 -

https://www.facebook.com/sharer/sharer.php/?u=https://resources.codeship.com/ebooks/vue-js-rails
https://twitter.com/intent/tweet?text=I%20just%20downloaded%20@Codeship%27s%20free%20eBook%3A%20%22VueJS%20as%20a%20Frontend%20for%20Rails%22%3A%20https://resources.codeship.com/ebooks/vue-js-rails
https://plus.google.com/share?url=https://resources.codeship.com/ebooks/vue-js-rails

Getting Started

Some brief setup instructions.

From this point, you can start work on VueJS without
CoffeeScript support (we'll add that later). Rails includes
an example of both frontend VueJS integration and
what's called a component.

These files are available at app/javascript/packs/hello_
vue.js and the component at app/javascript/hello.
vue . If you would like to challenge yourself to learn the
process of integrating these, this is a good place to start.

The Rails Vue Example

You may follow the instructions in this section if you wish
to try Rails' small challenge. Comment out the existing
code in hello_vue.js and uncomment the code in the
last section:

1 gem install rails --version "5.2.0.rc1"
2 rails _5.2.0.rc1_ new vue_example --webpack=vue
3 cd vue_exampleC

O
D

E
Share this

Codeship Guide

- 4 -

https://www.facebook.com/sharer/sharer.php/?u=https://resources.codeship.com/ebooks/vue-js-rails
https://twitter.com/intent/tweet?text=I%20just%20downloaded%20@Codeship%27s%20free%20eBook%3A%20%22VueJS%20as%20a%20Frontend%20for%20Rails%22%3A%20https://resources.codeship.com/ebooks/vue-js-rails
https://plus.google.com/share?url=https://resources.codeship.com/ebooks/vue-js-rails

Create a route and controller to work with and add the
root route to the config to point to it.

And add to the config/routes.rb file:

You can test that this works by running rails s and
having your web browser load http://localhost:3000 .
From ther, the challenge is up to you to learn what HTML-
and JavaScript-related code to put in the site template
and landing page to get both VueJS examples to work.
That's there for you to do, now let's go and do our own
form implementation in VueJS.

1 import TurbolinksAdapter from 'vue-turbolinks';
2 import Vue from 'vue/dist/vue.esm'
3 import App from '../app.vue'
4
5 Vue.use(TurbolinksAdapter)
6
7 document.addEventListener('turbolinks:load', () => {
8 const app = new Vue({
9 el: '#hello',
10 data: {
11 message: "Can you say hello?"
12 },
13 components: { App }
14 })
15 })

C
O

D
E

1 rails g controller LandingPage index

C
O

D
E

1 root to: "landing_page#index"

C
O

D
E

Share this

Codeship Guide

- 5 -

https://www.facebook.com/sharer/sharer.php/?u=https://resources.codeship.com/ebooks/vue-js-rails
https://twitter.com/intent/tweet?text=I%20just%20downloaded%20@Codeship%27s%20free%20eBook%3A%20%22VueJS%20as%20a%20Frontend%20for%20Rails%22%3A%20https://resources.codeship.com/ebooks/vue-js-rails
https://plus.google.com/share?url=https://resources.codeship.com/ebooks/vue-js-rails

Vue JS Rails Form Example

For this example, we're going to create a form for a writer
to keep track of their own documents – it will contain a
subject, body of text, and the state of revision.

First, let's generate the scaffolding for the document
resource.

Then edit the migration file under db/migrate and
change the line for state to provide a default value.

Now we can run rails db:migrate to update or
database. Next we need to update our model for the
different states the document may be in. Open up
 app/models/document.rb and add the following:

At this point, we're ready to start seeing the changes we'll
be making, so first we'll create a CoffeeScript file and

1 rails g scaffold Document subject:string:index body:text state:integer:index

C
O

D
E

1 t.integer :state, default: 0, null: false

C
O

D
E

1 class Document < ApplicationRecord
2 enum state: [:concept, :alpha, :beta, :draft, :publish]
3 endC

O
D

E
Share this

Codeship Guide

- 6 -

https://www.facebook.com/sharer/sharer.php/?u=https://resources.codeship.com/ebooks/vue-js-rails
https://twitter.com/intent/tweet?text=I%20just%20downloaded%20@Codeship%27s%20free%20eBook%3A%20%22VueJS%20as%20a%20Frontend%20for%20Rails%22%3A%20https://resources.codeship.com/ebooks/vue-js-rails
https://plus.google.com/share?url=https://resources.codeship.com/ebooks/vue-js-rails

then start a Rails server so we can refresh our browser to
work with the results. In a new terminal window, run the
following from your project directory:

Now with a browser window open, navigate to http://
localhost:3000/documents . Here you can use the Rails
CRUD for your document resource. We'll be replacing the
form to be VueJS-specific.

To start, we'll need to first add the ability to insert our
JavaScript pack into our site's header. So open your
application template app/views/layouts/application.html.
erb and add the following between the <head> and
 </head> tags.

1 touch app/javascript/packs/documents.coffee
2 rails s

C
O

D
E

1 <% if content_for? :head %>
2 <%= yield :head %>
3 <% end %>C

O
D

E
Share this

Codeship Guide

- 7 -

https://codeship.com/features/?utm_source=CodeshipeBook&utm_medium=ebook&utm_campaign=vue-js-rails
https://www.facebook.com/sharer/sharer.php/?u=https://resources.codeship.com/ebooks/vue-js-rails
https://twitter.com/intent/tweet?text=I%20just%20downloaded%20@Codeship%27s%20free%20eBook%3A%20%22VueJS%20as%20a%20Frontend%20for%20Rails%22%3A%20https://resources.codeship.com/ebooks/vue-js-rails
https://plus.google.com/share?url=https://resources.codeship.com/ebooks/vue-js-rails

Now we have a hook we can use on any page if we use
 content_for(:head) and give it a code block, which will
be written to the head section of our specific pages.

Open up app/views/documents/_form.html.erb and
erase all the contents of the file. This form is used for
new entries and updating existing entries in Rails for our
documents. First, let's put in the header code block to
load what will be our VueJS code.

At this point, trying to load localhost:3000/documents in
our browser won't work; we need it to recognize our
 .coffee file extension. You can stop the server running
in the terminal with CTRL-C and run the following.

1 <% content_for :head do -%>
2 <%= javascript_pack_tag 'documents' %>
3 <% end -%>C

O
D

E

1 bundle exec rails webpacker:install:coffee

C
O

D
E

Caution: Be sure to do your new feature installations in
small steps all while verifying they work before adding
more features. Otherwise this, plus a bunch of yarn add
commands before testing, can lead to this feature not
working at all.

Share this

Codeship Guide

- 8 -

https://www.facebook.com/sharer/sharer.php/?u=https://resources.codeship.com/ebooks/vue-js-rails
https://twitter.com/intent/tweet?text=I%20just%20downloaded%20@Codeship%27s%20free%20eBook%3A%20%22VueJS%20as%20a%20Frontend%20for%20Rails%22%3A%20https://resources.codeship.com/ebooks/vue-js-rails
https://plus.google.com/share?url=https://resources.codeship.com/ebooks/vue-js-rails

Now you can run rails s again and bring your browser
back to localhost:3000/documents and see that the
page loads without any errors. We can continue on to
the form now. Let's update the same file we were just
working on to the following.

1 <% content_for :head do -%>
2 <%= javascript_pack_tag 'documents' %>
3 <% end -%>
4
5 <%= content_tag :div,
6 id: "document-form",
7 data: {
8 document: document.to_json(except: [:created_at, :updated_at])
9 } do %>
10
11 <label>Subject</label>
12 <input type="text" v-model="document.subject" />
13
14 <label>State</label>
15 <select v-model="document.state">
16 <%= options_for_select(Document.states.keys, "concept") %>
17 </select>
18
19 <label>Body</label>
20 <textarea v-model="document.body" rows="20" cols="60"></textarea>
21
22

23
24 <button v-on:click="Submit">Submit</button>
25
26 <% end %>

C
O

D
E

Before writing the CoffeeScript implementation for our
VueJS code, let's briefly go over what we have in the file
above. The first block of code we've already discussed
will load our CoffeeScript asset code in the header
through our application template. The content_tag will

Share this

Codeship Guide

- 9 -

https://www.facebook.com/sharer/sharer.php/?u=https://resources.codeship.com/ebooks/vue-js-rails
https://twitter.com/intent/tweet?text=I%20just%20downloaded%20@Codeship%27s%20free%20eBook%3A%20%22VueJS%20as%20a%20Frontend%20for%20Rails%22%3A%20https://resources.codeship.com/ebooks/vue-js-rails
https://plus.google.com/share?url=https://resources.codeship.com/ebooks/vue-js-rails

create a div that stores our current pages' document
object as JSON. The document that's created or loaded
in the controller gets converted there, and this is what the
VueJS code will use.

The v-model items are all VueJS-specific names our
code will keep track of. For the select field , I've found
that the Rails options_for_select is much easier
to work with than VueJS' v-for technique, as it's
problematic trying to get it to select a selected option.
And yes, I've tried the half dozen variations of how-tos
available on the web for it all to no avail. There is a multi-
select add-on you could install with Yarn, but that's a bit
excessive for our simple use case.

The v-on:click will call the Submit function in our
Vue object (once we define it) to perform the actions
defined there.

Before continuing on, I'd like to share how the basic
VueJS option implementation would work if we used
that here instead.

1 <select v-model="document.state">
2 <option v-for="state in <%= Document.states.keys.to_json %>"
3 :value=state
4 >
5 {{ state }}
6 </option>
7 </select>

C
O

D
E

Share this

Codeship Guide

- 10 -

https://www.facebook.com/sharer/sharer.php/?u=https://resources.codeship.com/ebooks/vue-js-rails
https://twitter.com/intent/tweet?text=I%20just%20downloaded%20@Codeship%27s%20free%20eBook%3A%20%22VueJS%20as%20a%20Frontend%20for%20Rails%22%3A%20https://resources.codeship.com/ebooks/vue-js-rails
https://plus.google.com/share?url=https://resources.codeship.com/ebooks/vue-js-rails

You should recognize the ERB template <%= %> , which will
have Ruby get our states of the document and prepare it as
JSON. The v-for is part of Vue's own DSL, which treats
the content like normal for loop code. For every document
state, this will duplicate the HTML <option> tags and put
the replacement word for the state variable on both the
value parameter and in the {{ }} place.

One last thing I'd like to point out that VueJS has is from
their core documentation:

We haven't covered components yet, but what I'd like to
point out in this example is that the use of v-bind here
will execute what's in the quotation marks as regular

1 <my-component
2 v-for="(item, index) in items"
3 v-bind:item="item"
4 v-bind:index="index"
5 v-bind:key="item.id"
6 ></my>

C
O

D
E

Share this

Codeship Guide

- 11 -

https://codeship.com/features/?utm_source=CodeshipeBook&utm_medium=ebook&utm_campaign=vue-js-rails
https://www.facebook.com/sharer/sharer.php/?u=https://resources.codeship.com/ebooks/vue-js-rails
https://twitter.com/intent/tweet?text=I%20just%20downloaded%20@Codeship%27s%20free%20eBook%3A%20%22VueJS%20as%20a%20Frontend%20for%20Rails%22%3A%20https://resources.codeship.com/ebooks/vue-js-rails
https://plus.google.com/share?url=https://resources.codeship.com/ebooks/vue-js-rails

JavaScript. So each of these values gets assigned from
the JS scope.

Now onto the CoffeeScript VueJS code for our form.

The Code

Now we need to install some Yarn dependencies for
having Vue work with Turbolinks in Rails and for more
convenient PUT/POST commands.

Now our VueJS code can be written in app/javascript/
packs/documents.coffee . You get extra credit if you've
already realized that by using the word 'document' we've
used a conflicting JavaScript keyword. Because this is the
case, we'll use the variable ourDocument in the script to
keep things clear and working.

1 yarn add vue-resource vue-turbolinks

C
O

D
E

1 import Vue from 'vue/dist/vue.esm'
2 import TurbolinksAdapter from 'vue-turbolinks'
3 import VueResource from 'vue-resource'
4
5 Vue.use(VueResource)
6 Vue.use(TurbolinksAdapter)
7
8 document.addEventListener('turbolinks:load', () ->
9 Vue.http.headers.common['X-CSRF-Token'] = document
10 .querySelector('meta[name="csrf-token"]')
11 .getAttribute('content')

C
O

D
E

Share this

Codeship Guide

- 12 -

https://www.facebook.com/sharer/sharer.php/?u=https://resources.codeship.com/ebooks/vue-js-rails
https://twitter.com/intent/tweet?text=I%20just%20downloaded%20@Codeship%27s%20free%20eBook%3A%20%22VueJS%20as%20a%20Frontend%20for%20Rails%22%3A%20https://resources.codeship.com/ebooks/vue-js-rails
https://plus.google.com/share?url=https://resources.codeship.com/ebooks/vue-js-rails

The event turbolinks:load is the trigger to run this
code whenever a page loads in Rails. This code needs to
be executed within the <head> section of web pages, or
you'll get side effects of it not loading without a refresh.

The next line gets the CSRF token, which is needed to
verify any data submitted to the server. It takes it from
what Rails hands us and assigns it to a response header.

12
13 if element != null
14 ourDocument = JSON.parse(element.dataset.document)
15
16 app = new Vue(
17 el: element
18
19 data: ->
20 { document: ourDocument }
21
22 methods: Submit: ->
23 if ourDocument.id == null
24 @$http # New action
25 .post '/documents', document: @document
26 .then (response) ->
27 Turbolinks.visit "/documents/#{response.body.id}"
28 return
29 (response) ->
30 @errors = response.data.errors
31 return
32 else
33 @$http # Edit action
34 .put "/documents/#{document.id}", document: @document
35 .then (response) ->
36 Turbolinks.visit "/documents/#{response.body.id}"
37 return
38 (response) ->
39 @errors = response.data.errors
40 return
41 return
42)
43)

C
O

D
E

Share this

Codeship Guide

- 13 -

https://www.facebook.com/sharer/sharer.php/?u=https://resources.codeship.com/ebooks/vue-js-rails
https://twitter.com/intent/tweet?text=I%20just%20downloaded%20@Codeship%27s%20free%20eBook%3A%20%22VueJS%20as%20a%20Frontend%20for%20Rails%22%3A%20https://resources.codeship.com/ebooks/vue-js-rails
https://plus.google.com/share?url=https://resources.codeship.com/ebooks/vue-js-rails

Next we have an assignment of an element with an id of
 document-form . This is an id we've placed in our content_
tag earlier. The rest of this script is based off of this
existing since we do a check if element != null .

The ourDocument variable is assigned the data we placed
in the page as JSON in the content_tag :div for the data
section. It parses the JSON data, and we continue.

Next we create a Vue object instance in JavaScript
(CoffeeScript) with its first parameter being the element ,
which is the document form.

Under methods , we have our Submit function, which
is triggered via the submit button on the page. The if
conditional that follows that is a check to see if it's a new
object and we should use the Rails "new record" path, or if
it's an existing object and we'll use PUT to update it.

The @http , post , put , and then are all benefits
from the vue-resource Yarn package we installed earlier.
It actually reads out pretty well as is. Just by looking at it,
you can see it posts some data to a server URL and then
gives us a response. The response in parenthesis is a
function parameter, and we have two paths for it. The first
is the good server response path, and the other is an error
situation.

This is surprisingly straight-forward once you know the
parts. And with that, we have a VueJS form for our Rails
site that works well and loads quickly.

Share this

Codeship Guide

- 14 -

https://www.facebook.com/sharer/sharer.php/?u=https://resources.codeship.com/ebooks/vue-js-rails
https://twitter.com/intent/tweet?text=I%20just%20downloaded%20@Codeship%27s%20free%20eBook%3A%20%22VueJS%20as%20a%20Frontend%20for%20Rails%22%3A%20https://resources.codeship.com/ebooks/vue-js-rails
https://plus.google.com/share?url=https://resources.codeship.com/ebooks/vue-js-rails

About Components

One of the main attractions about VueJS is its
components. What it provides is one location for each
component you want to create to have the HTML,
JavaScript, and CSS styles all in their own vue file.
These components boast that the styles won't collide
with styles elsewhere on your site. They are well-
contained and organized singular functional units of code
that may be used most anywhere and can be potentially
extended or included within other components. Think of
components as the ultimate building block.

If you've done the challenge shown at the beginning of
this post, or noticed the component example we breezed
by, you most likely have discovered that components get
their own XML/HTML tag. The example above is called
 <my-component> and is valid for HTML documents.
Doing the Rails provided example will show you just how
easy it is to drop a component in place.

Share this

Codeship Guide

- 15 -

https://www.facebook.com/sharer/sharer.php/?u=https://resources.codeship.com/ebooks/vue-js-rails
https://twitter.com/intent/tweet?text=I%20just%20downloaded%20@Codeship%27s%20free%20eBook%3A%20%22VueJS%20as%20a%20Frontend%20for%20Rails%22%3A%20https://resources.codeship.com/ebooks/vue-js-rails
https://plus.google.com/share?url=https://resources.codeship.com/ebooks/vue-js-rails

Summary

The possibilities with VueJS are pretty high as there are
many add-on systems you can integrate with designed
to make it work more like a full framework. So you can
do as little or as much as you want with it — you're given
the liberty to choose however you like.

VueJS has excellent tools to work with for diagnosing
both state and issue that may arise. You can get a
browser plugin for Chrome or Firefox and even try out
their Electron app. Check them out at vue-devtools.
Enjoy!

Share this

Codeship Guide

- 16 -

https://github.com/vuejs/vue-devtools
https://www.facebook.com/sharer/sharer.php/?u=https://resources.codeship.com/ebooks/vue-js-rails
https://twitter.com/intent/tweet?text=I%20just%20downloaded%20@Codeship%27s%20free%20eBook%3A%20%22VueJS%20as%20a%20Frontend%20for%20Rails%22%3A%20https://resources.codeship.com/ebooks/vue-js-rails
https://plus.google.com/share?url=https://resources.codeship.com/ebooks/vue-js-rails

Share this

Codeship Guide

- 17 -

More Codeship Resources.

E
B

O
O

K
S

Efficient Project Management
for Small Engineering Teams.
In this eBook you will learn how to find balance
when managing small engineering teams.

Download this eBook

E
B

O
O

K
S

Test-Driven Development
for JavaScript.
In this eBook we will explore the idea of Test-Driven
Development (TDD) for client-side JavaScript.

Download this eBook

E
B

O
O

K
S

Dockerizing Ruby Apps and
Effectively Testing them.
In this eBook you will learn how to dockerize
Ruby applications and how to test them.

Download this eBook

https://www.facebook.com/sharer/sharer.php/?u=https://resources.codeship.com/ebooks/vue-js-rails
https://twitter.com/intent/tweet?text=I%20just%20downloaded%20@Codeship%27s%20free%20eBook%3A%20%22VueJS%20as%20a%20Frontend%20for%20Rails%22%3A%20https://resources.codeship.com/ebooks/vue-js-rails
https://plus.google.com/share?url=https://resources.codeship.com/ebooks/vue-js-rails
https://resources.codeship.com/ebooks/small-engineering-teams-efficient-project-management?utm_source=CodeshipeBook&utm_medium=ebook&utm_campaign=vue-js-rails
https://resources.codeship.com/ebooks/test-driven-development-javascript-tdd?utm_source=CodeshipeBook&utm_medium=ebook&utm_campaign=vue-js-rails
https://resources.codeship.com/ebooks/dockerizing-ruby-apps-testing?utm_source=CodeshipeBook&utm_medium=ebook&utm_campaign=vue-js-rails

Share this

Codeship Guide

About Codeship.

Codeship is a hosted Continuous Integration service that fits all your needs.
Codeship Basic provides pre-installed dependencies and a simple setup UI
that let you incorporate CI and CD in only minutes. Codeship Pro has native
Docker support and gives you full control of your CI and CD setup while
providing the convenience of a hosted solution.

Codeship Basic

A simple out-of-the-box Continuous
Integration service that just works.

Starting at $0/month.

Works out of the box

Preinstalled CI dependencies

Optimized hosted infrastructure

Quick & simple setup

Codeship Pro

A fully customizable hosted
Continuous Integration service.

Starting at $0/month.

Customizability & Full Autonomy

Local CLI tool

Dedicated single-tenant instances

Deploy anywhere

LEARN MORELEARN MORE

https://www.facebook.com/sharer/sharer.php/?u=https://resources.codeship.com/ebooks/vue-js-rails
https://twitter.com/intent/tweet?text=I%20just%20downloaded%20@Codeship%27s%20free%20eBook%3A%20%22VueJS%20as%20a%20Frontend%20for%20Rails%22%3A%20https://resources.codeship.com/ebooks/vue-js-rails
https://plus.google.com/share?url=https://resources.codeship.com/ebooks/vue-js-rails
https://codeship.com/features/basic/?utm_source=CodeshipeBook&utm_medium=ebook&utm_campaign=vue-js-rails
https://codeship.com/features/pro/?utm_source=CodeshipeBook&utm_medium=ebook&utm_campaign=vue-js-rails
https://codeship.com/features/pro/?utm_source=CodeshipeBook&utm_medium=ebook&utm_campaign=vue-js-rails
https://codeship.com/features/basic/?utm_source=CodeshipeBook&utm_medium=ebook&utm_campaign=vue-js-rails

